Mathematics – Number Theory
Scientific paper
2009-06-05
Mathematics
Number Theory
31 pages, typos corrected
Scientific paper
We propose a functional integral representation for Archimedean L-factors given by products of Gamma-functions. The corresponding functional integral arises in the description of type A equivariant topological linear sigma model on a disk. The functional integral representation provides in particular an interpretation of the Gamma-function as an equivariant symplectic volume of an infinite-dimensional space of holomorphic maps of the disk to C. This should be considered as a mirror-dual to the classical Euler integral representation of the Gamma-function. We give an analogous functional integral representation of q-deformed Gamma-functions using a three-dimensional equivariant topological linear sigma model on a handlebody. In general, upon proper ultra-violent completion, the topological sigma model considered on a particular class of three-dimensional spaces with a compact Kahler target space provides a quantum field theory description of a K-theory version of Gromov-Witten invariants.
Gerasimov Anton A.
Lebedev Dimitri
Oblezin Sergey
No associations
LandOfFree
Archimedean L-factors and Topological Field Theories I does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Archimedean L-factors and Topological Field Theories I, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Archimedean L-factors and Topological Field Theories I will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-522238