Mathematics – Statistics Theory
Scientific paper
2005-08-30
Annals of Statistics 2004, Vol. 32, No. 6, 2616-2641
Mathematics
Statistics Theory
Published at http://dx.doi.org/10.1214/009053604000000823 in the Annals of Statistics (http://www.imstat.org/aos/) by the Inst
Scientific paper
10.1214/009053604000000823
Approximately unbiased tests based on bootstrap probabilities are considered for the exponential family of distributions with unknown expectation parameter vector, where the null hypothesis is represented as an arbitrary-shaped region with smooth boundaries. This problem has been discussed previously in Efron and Tibshirani [Ann. Statist. 26 (1998) 1687-1718], and a corrected p-value with second-order asymptotic accuracy is calculated by the two-level bootstrap of Efron, Halloran and Holmes [Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 13429-13434] based on the ABC bias correction of Efron [J. Amer. Statist. Assoc. 82 (1987) 171-185]. Our argument is an extension of their asymptotic theory, where the geometry, such as the signed distance and the curvature of the boundary, plays an important role. We give another calculation of the corrected p-value without finding the ``nearest point'' on the boundary to the observation, which is required in the two-level bootstrap and is an implementational burden in complicated problems. The key idea is to alter the sample size of the replicated dataset from that of the observed dataset. The frequency of the replicates falling in the region is counted for several sample sizes, and then the p-value is calculated by looking at the change in the frequencies along the changing sample sizes. This is the multiscale bootstrap of Shimodaira [Systematic Biology 51 (2002) 492-508], which is third-order accurate for the multivariate normal model. Here we introduce a newly devised multistep-multiscale bootstrap, calculating a third-order accurate p-value for the exponential family of distributions.
No associations
LandOfFree
Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-21161