Computer Science – Data Structures and Algorithms
Scientific paper
2008-07-29
Computer Science
Data Structures and Algorithms
Scientific paper
In the kernel clustering problem we are given a large $n\times n$ positive semi-definite matrix $A=(a_{ij})$ with $\sum_{i,j=1}^na_{ij}=0$ and a small $k\times k$ positive semi-definite matrix $B=(b_{ij})$. The goal is to find a partition $S_1,...,S_k$ of $\{1,... n\}$ which maximizes the quantity $$ \sum_{i,j=1}^k (\sum_{(i,j)\in S_i\times S_j}a_{ij})b_{ij}. $$ We study the computational complexity of this generic clustering problem which originates in the theory of machine learning. We design a constant factor polynomial time approximation algorithm for this problem, answering a question posed by Song, Smola, Gretton and Borgwardt. In some cases we manage to compute the sharp approximation threshold for this problem assuming the Unique Games Conjecture (UGC). In particular, when $B$ is the $3\times 3$ identity matrix the UGC hardness threshold of this problem is exactly $\frac{16\pi}{27}$. We present and study a geometric conjecture of independent interest which we show would imply that the UGC threshold when $B$ is the $k\times k$ identity matrix is $\frac{8\pi}{9}(1-\frac{1}{k})$ for every $k\ge 3$.
Khot Subhash
Naor Assaf
No associations
LandOfFree
Approximate kernel clustering does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Approximate kernel clustering, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Approximate kernel clustering will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-38478