Mathematics – Probability
Scientific paper
2006-11-22
Ann. Inst. H. Poincare Probab. Statist. 274 (2008), no. 2, 374-392
Mathematics
Probability
22 pages. Includes a self-contained proof of isoperimetric inequality for supercritical percolation clusters. Version to appea
Scientific paper
10.1214/07-AIHP126
We consider the nearest-neighbor simple random walk on $\Z^d$, $d\ge2$, driven by a field of bounded random conductances $\omega_{xy}\in[0,1]$. The conductance law is i.i.d. subject to the condition that the probability of $\omega_{xy}>0$ exceeds the threshold for bond percolation on $\Z^d$. For environments in which the origin is connected to infinity by bonds with positive conductances, we study the decay of the $2n$-step return probability $P_\omega^{2n}(0,0)$. We prove that $P_\omega^{2n}(0,0)$ is bounded by a random constant times $n^{-d/2}$ in $d=2,3$, while it is $o(n^{-2})$ in $d\ge5$ and $O(n^{-2}\log n)$ in $d=4$. By producing examples with anomalous heat-kernel decay approaching $1/n^2$ we prove that the $o(n^{-2})$ bound in $d\ge5$ is the best possible. We also construct natural $n$-dependent environments that exhibit the extra $\log n$ factor in $d=4$. See also math.PR/0701248.
Berger Noam
Biskup Marek
Hoffman Christopher E.
Kozma Gady
No associations
LandOfFree
Anomalous heat-kernel decay for random walk among bounded random conductances does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Anomalous heat-kernel decay for random walk among bounded random conductances, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anomalous heat-kernel decay for random walk among bounded random conductances will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-368568