Analyzing Weighted $\ell_1$ Minimization for Sparse Recovery with Nonuniform Sparse Models\footnote{The results of this paper were presented in part at the International Symposium on Information Theory, ISIT 2009}

Computer Science – Information Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

In this paper we introduce a nonuniform sparsity model and analyze the performance of an optimized weighted $\ell_1$ minimization over that sparsity model. In particular, we focus on a model where the entries of the unknown vector fall into two sets, with entries of each set having a specific probability of being nonzero. We propose a weighted $\ell_1$ minimization recovery algorithm and analyze its performance using a Grassmann angle approach. We compute explicitly the relationship between the system parameters-the weights, the number of measurements, the size of the two sets, the probabilities of being nonzero- so that when i.i.d. random Gaussian measurement matrices are used, the weighted $\ell_1$ minimization recovers a randomly selected signal drawn from the considered sparsity model with overwhelming probability as the problem dimension increases. This allows us to compute the optimal weights. We demonstrate through rigorous analysis and simulations that for the case when the support of the signal can be divided into two different subclasses with unequal sparsity fractions, the optimal weighted $\ell_1$ minimization outperforms the regular $\ell_1$ minimization substantially. We also generalize the results to an arbitrary number of classes.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Analyzing Weighted $\ell_1$ Minimization for Sparse Recovery with Nonuniform Sparse Models\footnote{The results of this paper were presented in part at the International Symposium on Information Theory, ISIT 2009} does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Analyzing Weighted $\ell_1$ Minimization for Sparse Recovery with Nonuniform Sparse Models\footnote{The results of this paper were presented in part at the International Symposium on Information Theory, ISIT 2009}, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analyzing Weighted $\ell_1$ Minimization for Sparse Recovery with Nonuniform Sparse Models\footnote{The results of this paper were presented in part at the International Symposium on Information Theory, ISIT 2009} will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-476539

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.