Analyticity of the planar limit of a matrix model

Mathematics – Classical Analysis and ODEs

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

61 pages, 3 figures

Scientific paper

Using Chebyshev polynomials combined with some mild combinatorics, we provide a new formula for the analytical planar limit of a random matrix model with a one-cut potential $V$. For potentials $V(x)=x^{2}/2-\sum_{n\ge1}a_{n}x^{n}/n$, as a power series in all $a_{n}$, the formal Taylor expansion of the analytic planar limit is exactly the formal planar limit. In the case $V$ is analytic in infinitely many variables $\{a_{n}\}_{n\ge1}$ (on the appropriate spaces), the planar limit is also an analytic function in infinitely many variables and we give quantitative versions of where this is defined. Particularly useful in enumerative combinatorics are the gradings of $V$, $V_{t}(x)=x^{2}/2-\sum_{n\ge1}a_{n}t^{n/2}x^{n}/n$ and $V_{t}(x)=x^{2}/2-\sum_{n\ge3}a_{n}t^{n/2 -1}x^{n}/n$. The associated planar limits $F(t)$ as functions of $t$ count planar diagram sorted by the number of edges respectively faces. We point out a method of computing the asymptotic of the coefficients of $F(t)$ using the combination of the \emph{wzb} method and the resolution of singularies. This is illustrated in several computations revolving around the important extreme potential $V_{t}(x)=x^{2}/2+\log(1-\sqrt{t}x)$ and its variants. This particular example gives a quantitive and sharp answer to a conjecture of t'Hoofts which states that if the potential is analytic, the planar limit is also analytic.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Analyticity of the planar limit of a matrix model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Analyticity of the planar limit of a matrix model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analyticity of the planar limit of a matrix model will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-87181

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.