Mathematics – Probability
Scientific paper
2006-09-06
Annals of Applied Probability 2007, Vol. 17, No. 4, 1424-1445
Mathematics
Probability
Published in at http://dx.doi.org/10.1214/105051607000000177 the Annals of Applied Probability (http://www.imstat.org/aap/) by
Scientific paper
10.1214/105051607000000177
We study Markov chains which model genome rearrangements. These models are useful for studying the equilibrium distribution of chromosomal lengths, and are used in methods for estimating genomic distances. The primary Markov chain studied in this paper is the top-swap Markov chain. The top-swap chain is a card-shuffling process with $n$ cards divided over $k$ decks, where the cards are ordered within each deck. A transition consists of choosing a random pair of cards, and if the cards lie in different decks, we cut each deck at the chosen card and exchange the tops of the two decks. We prove precise bounds on the relaxation time (inverse spectral gap) of the top-swap chain. In particular, we prove the relaxation time is $\Theta(n+k)$. This resolves an open question of Durrett.
Bhatnagar Nayantara
Caputo Pietro
Tetali Prasad
Vigoda Eric
No associations
LandOfFree
Analysis of top-swap shuffling for genome rearrangements does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Analysis of top-swap shuffling for genome rearrangements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analysis of top-swap shuffling for genome rearrangements will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-418903