Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008spie.7017e..33m&link_type=abstract
Modeling, Systems Engineering, and Project Management for Astronomy III. Edited by Angeli, George Z.; Cullum, Martin J. Proc
Astronomy and Astrophysics
Astronomy
Scientific paper
The primary mirror control system (M1CS) keeps the 492 segments of the Thirty Meter Telescope primary mirror aligned in the presence of disturbances. A global position control loop uses feedback from inter-segment edge sensors to three actuators behind each segment that control segment piston, tip and tilt. If soft force actuators are used (e.g. voice-coil), then in addition to the global position loop there will be a local servo loop to provide stiffness. While the M1 control system at Keck compensates only for slow disturbances such as gravity and thermal variations, the M1CS for TMT will need to provide some compensation for higher frequency wind disturbances in order to meet stringent error budget targets. An analysis of expected high-wavenumber wind forces on M1 suggests that a 1Hz control bandwidth is required for the global feedback of segment edge-sensorbased position information in order to minimize high spatial frequency segment response for both seeing-limited and adaptive optics performance. A much higher bandwidth is required from the local servo loop to provide adequate stiffness to wind or acoustic disturbances. A related paper presents the control designs for the local actuator servo loops. The disturbance rejection requirements would not be difficult to achieve for a single segment, but the structural coupling between segments mounted on a flexible mirror cell results in controlstructure interaction (CSI) that limits the achievable bandwidth. Using a combination of simplified modeling to build intuition and the full telescope finite element model for verification, we present designs and analysis for both the local servo loop and global loop demonstrating sufficient bandwidth and resulting wind-disturbance rejection despite the presence of CSI.
MacMynowski Douglas G.
Sirota Mark J.
Thompson Peter M.
No associations
LandOfFree
Analysis of TMT primary mirror control-structure interaction does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Analysis of TMT primary mirror control-structure interaction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analysis of TMT primary mirror control-structure interaction will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-794039