Analysis of thermally stimulated luminescence and conductivity without quasiequilibrium approximation

Nonlinear Sciences – Exactly Solvable and Integrable Systems

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1088/0022-3727/40/16/034

Thermally stimulated luminescence (TSL) and conductivity (TSC) are considered using the classical insulator model that assumes one kind of the active trap, one kind of inactive deep trap, and one kind of the recombination center. Kinetic equations describing the model are solved numerically without and with the use of the quasiequilibrium (QE) approximation. The QE state parameter qI,, the relative recombination probability g, and a new parameter called quasi-stationary (QS) state parameter q*=qIg are used for the analysis of the TSL and TSC. The TSL and TSC curves and the temperature dependences of qI, q*, g, the recombination lifetime, and the occupancies of active traps and recombination centers are numerically calculated for five sets of kinetic parameters and different heating rates. These calculation results show that: (1) the upper limit of the heating rate for presence of the QS state appears at higher heating rate than that for the QE state when the retrapping process is present, and (2) the TSL (TSC) curves in the QS state have the properties similar to those for the TSL (TSC) curves in the QE state. Approximate formulas for calculation of the parameters qI and q* in the initial range of the TSL and TSC curves are derived and used in the heating-rate methods, proposed in this work, for determination of those parameters from the calculated TSL curves.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Analysis of thermally stimulated luminescence and conductivity without quasiequilibrium approximation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Analysis of thermally stimulated luminescence and conductivity without quasiequilibrium approximation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analysis of thermally stimulated luminescence and conductivity without quasiequilibrium approximation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-372888

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.