Other
Scientific paper
Jun 2005
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005gecoa..69.2767t&link_type=abstract
Geochimica et Cosmochimica Acta, Volume 69, Issue 11, p. 2767-2779.
Other
10
Scientific paper
Anaerobic oxidation of methane (AOM) and sulfate reduction (SR) were investigated in sediments of the Chilean upwelling region at three stations between 800 and 3000 m water depth. Major goals of this study were to quantify and evaluate rates of AOM and SR in a coastal marine upwelling system with high organic input, to analyze the impact of AOM on the methane budget, and to determine the contribution of AOM to SR within the sulfate-methane transition zone (SMT). Furthermore, we investigated the formation of authigenic carbonates correlated with AOM. We determined the vertical distribution of AOM and SR activity, methane, sulfate, sulfide, pH, total chlorins, and a variety of other geochemical parameters. Depth-integrated rates of AOM within the SMT were between 7 and 1124 mmol m-2 a-1, effectively removing methane below the sediment-water interface. Single measurements revealed AOM peaks of 2 to 51 nmol cm-3 d-1, with highest rates at the shallowest station (800 m). The methane turnover was higher than in other diffusive systems of similar ocean depth. This higher turnover was most likely due to elevated organic matter input in this upwelling region offering significant amounts of substrates for methanogenesis. SR within the SMT was mostly fuelled by methane. AOM led to the formation of isotopically light DIC (δ13C: -24.6‰ VPDB) and of distinct layers of authigenic carbonates (δ13C: -14.6‰ VPDB).
Barker Jørgensen Bo
Boetius Antje
Kallmeyer Jens
Niggemann Jutta
Schubert Carsten J.
No associations
LandOfFree
Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-873836