Computer Science – Computer Vision and Pattern Recognition
Scientific paper
2009-10-26
Computer Science
Computer Vision and Pattern Recognition
The paper was submitted to the IEEE Transactions on Image Processing on October 22nd, 2009
Scientific paper
The problem of restoration of digital images from their degraded measurements plays a central role in a multitude of practically important applications. A particularly challenging instance of this problem occurs in the case when the degradation phenomenon is modeled by an ill-conditioned operator. In such a case, the presence of noise makes it impossible to recover a valuable approximation of the image of interest without using some a priori information about its properties. Such a priori information is essential for image restoration, rendering it stable and robust to noise. Particularly, if the original image is known to be a piecewise smooth function, one of the standard priors used in this case is defined by the Rudin-Osher-Fatemi model, which results in total variation (TV) based image restoration. The current arsenal of algorithms for TV-based image restoration is vast. In the present paper, a different approach to the solution of the problem is proposed based on the method of iterative shrinkage (aka iterated thresholding). In the proposed method, the TV-based image restoration is performed through a recursive application of two simple procedures, viz. linear filtering and soft thresholding. Therefore, the method can be identified as belonging to the group of first-order algorithms which are efficient in dealing with images of relatively large sizes. Another valuable feature of the proposed method consists in its working directly with the TV functional, rather then with its smoothed versions. Moreover, the method provides a single solution for both isotropic and anisotropic definitions of the TV functional, thereby establishing a useful connection between the two formulae.
No associations
LandOfFree
An Iterative Shrinkage Approach to Total-Variation Image Restoration does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with An Iterative Shrinkage Approach to Total-Variation Image Restoration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An Iterative Shrinkage Approach to Total-Variation Image Restoration will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-481719