An isoperimetric inequality for a nonlinear eigenvalue problem

Mathematics – Analysis of PDEs

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Annales de l'Institut Henri Poincar\'e Analyse non lin\'eaire (2012) 15 pages; Equipe Equations aux d\'eriv\'ees partielles et

Scientific paper

We prove an isoperimetric inequality of the Rayleigh-Faber-Krahn type for a
nonlinear generalization of the first twisted Dirichlet eigenvalue. More
precisely, we show that the minimizer among sets of given volume is the union
of two equal balls.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

An isoperimetric inequality for a nonlinear eigenvalue problem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with An isoperimetric inequality for a nonlinear eigenvalue problem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An isoperimetric inequality for a nonlinear eigenvalue problem will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-569933

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.