Mathematics – Analysis of PDEs
Scientific paper
2010-11-10
Mathematics
Analysis of PDEs
Scientific paper
We consider the wave equation $(\p_t^2-\Delta_g)u(t,x)=f(t,x)$, in $\R^n$, $u|_{\R_-\times \R^n}=0$, where the metric $g=(g_{jk}(x))_{j,k=1}^n$ is known outside an open and bounded set $M\subset \R^n$ with smooth boundary $\p M$. We define a deterministic source $f(t,x)$ called the pseudorandom noise as a sum of point sources, $f(t,x)=\sum_{j=1}^\infty a_j\delta_{x_j}(x)\delta(t)$, where the points $x_j,\ j\in\Z_+$, form a dense set on $\p M$. We show that when the weights $a_j$ are chosen appropriately, $u|_{\R\times \p M}$ determines the scattering relation on $\p M$, that is, it determines for all geodesics which pass through $M$ the travel times together with the entering and exit points and directions. The wave $u(t,x)$ contains the singularities produced by all point sources, but when $a_j=\lambda^{-\lambda^{j}}$ for some $\lambda>1$, we can trace back the point source that produced a given singularity in the data. This gives us the distance in $(\R^n, g)$ between a source point $x_j$ and an arbitrary point $y \in \p M$. In particular, if $(\bar M,g)$ is a simple Riemannian manifold and $g$ is conformally Euclidian in $\bar M$, these distances are known to determine the metric $g$ in $M$. In the case when $(\bar M,g)$ is non-simple we present a more detailed analysis of the wave fronts yielding the scattering relation on $\p M$.
Helin Tapio
Lassas Matti
Oksanen Lauri
No associations
LandOfFree
An inverse problem for the wave equation with one measurement and the pseudorandom noise does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with An inverse problem for the wave equation with one measurement and the pseudorandom noise, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An inverse problem for the wave equation with one measurement and the pseudorandom noise will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-430101