Computer Science – Information Theory
Scientific paper
2011-07-11
Computer Science
Information Theory
5 pages, to be appear in IEEE Trans. Signal Process
Scientific paper
It is proved that in a non-Bayesian parametric estimation problem, if the Fisher information matrix (FIM) is singular, unbiased estimators for the unknown parameter will not exist. Cramer-Rao bound (CRB), a popular tool to lower bound the variances of unbiased estimators, seems inapplicable in such situations. In this paper, we show that the Moore-Penrose generalized inverse of a singular FIM can be interpreted as the CRB corresponding to the minimum variance among all choices of minimum constraint functions. This result ensures the logical validity of applying the Moore-Penrose generalized inverse of an FIM as the covariance lower bound when the FIM is singular. Furthermore, the result can be applied as a performance bound on the joint design of constraint functions and unbiased estimators.
Li Yen-Huan
Yeh Ping-Cheng
No associations
LandOfFree
An Interpretation of the Moore-Penrose Generalized Inverse of a Singular Fisher Information Matrix does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with An Interpretation of the Moore-Penrose Generalized Inverse of a Singular Fisher Information Matrix, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An Interpretation of the Moore-Penrose Generalized Inverse of a Singular Fisher Information Matrix will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-137367