Biology – Quantitative Biology – Subcellular Processes
Scientific paper
2011-12-20
Biology
Quantitative Biology
Subcellular Processes
17 pages, 7 figures
Scientific paper
Signal transduction, the information processing mechanism in biological cells, is carried out by a network of biochemical reactions. The dynamics of driven biochemical reactions can be studied in terms of nonequilibrium statistical physics. Such systems may also be studied in terms of Shannon's information theory. We combine these two perspectives in this study of the basic units (modules) of cellular signaling: the phosphorylation dephosphorylation cycle (PdPC) and the guanosine triphosphatase (GTPase). We show that the channel capacity is zero if and only if the free energy expenditure of biochemical system is zero. In fact, a positive correlation between the channel capacity and free energy expenditure is observed. In terms of the information theory, a linear signaling cascade consisting of multiple steps of PdPC can function as a distributed "multistage code". With increasing number of steps in the cascade, the system trades channel capacity with the code complexity. Our analysis shows that while a static code can be molecular structural based; a biochemical communication channel has to have energy expenditure.
Qian Hong
Roy Sumit
No associations
LandOfFree
An Information Theoretical Analysis of Kinase Activated Phosphorylation Dephosphorylation Cycle does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with An Information Theoretical Analysis of Kinase Activated Phosphorylation Dephosphorylation Cycle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An Information Theoretical Analysis of Kinase Activated Phosphorylation Dephosphorylation Cycle will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-54735