Mathematics – Optimization and Control
Scientific paper
2010-06-10
Advances in Mathematics 226 (2011), 4667-4701
Mathematics
Optimization and Control
27 pages, 2 figures
Scientific paper
The joint spectral radius of a finite set of real $d \times d$ matrices is defined to be the maximum possible exponential rate of growth of long products of matrices drawn from that set. A set of matrices is said to have the \emph{finiteness property} if there exists a periodic product which achieves this maximal rate of growth. J.C. Lagarias and Y. Wang conjectured in 1995 that every finite set of real $d \times d$ matrices satisfies the finiteness property. However, T. Bousch and J. Mairesse proved in 2002 that counterexamples to the finiteness conjecture exist, showing in particular that there exists a family of pairs of $2 \times 2$ matrices which contains a counterexample. Similar results were subsequently given by V.D. Blondel, J. Theys and A.A. Vladimirov and by V.S. Kozyakin, but no explicit counterexample to the finiteness conjecture has so far been given. The purpose of this paper is to resolve this issue by giving the first completely explicit description of a counterexample to the Lagarias-Wang finiteness conjecture. Namely, for the set \[ \mathsf{A}_{\alpha_*}:= \{({cc}1&1\\0&1), \alpha_*({cc}1&0\\1&1)\}\] we give an explicit value of \alpha_* \simeq 0.749326546330367557943961948091344672091327370236064317358024...] such that $\mathsf{A}_{\alpha_*}$ does not satisfy the finiteness property.
Hare Kevin G.
Morris Ian D.
Sidorov Nikita
Theys Jacques
No associations
LandOfFree
An explicit counterexample to the Lagarias-Wang finiteness conjecture does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with An explicit counterexample to the Lagarias-Wang finiteness conjecture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An explicit counterexample to the Lagarias-Wang finiteness conjecture will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-492802