Statistics – Methodology
Scientific paper
Jan 2003
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003angeo..21..399a&link_type=abstract
Annales Geophysicae, vol. 21, Issue 1, pp.399-411
Statistics
Methodology
13
Scientific paper
The purpose of this paper is to examine the use of a complex ecosystem model along with near real-time in situ data and a sequential data assimilation method for state estimation. The ecosystem model used is the European Regional Seas Ecosystem Model (ERSEM; Baretta et al., 1995) and the assimilation method chosen is the Ensemble Kalman Filer (EnKF). Previously, it has been shown that this method captures the nonlinear error evolution in time and is capable of both tracking the observations and providing realistic error estimates for the estimated state. This system has been used to assimilate long time series of in situ chlorophyll taken from a data buoy in the Cretan Sea. The assimilation of this data using the EnKF method results in a marked improvement in the ability of ERSEM to hindcast chlorophyll. The sensitivity of this system to the type of data used for assimilation, the frequency of assimilation, ensemble size and model errors is discussed. The predictability window of the EnKF appears to be at least 2 days. This is an indication that the methodology might be suitable for future operational data assimilation systems using more complex three-dimensional models.
Allen I. J.
Eknes M.
Evensen G.
No associations
LandOfFree
An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1525716