Mathematics – Commutative Algebra
Scientific paper
2010-03-09
Mathematics
Commutative Algebra
notes style -> paper style
Scientific paper
In this paper we develop an axiomatic setup for algorithmic homological algebra of Abelian categories. This is done by exhibiting all existential quantifiers entering the definition of an Abelian category, which for the sake of computability need to be turned into constructive ones. We do this explicitly for the often-studied example Abelian category of finitely presented modules over a so-called computable ring R, i.e., a ring with an explicit algorithm to solve one-sided (in)homogeneous linear systems over R. For a finitely generated maximal ideal m in a commutative ring R we show how solving (in)homogeneous linear systems over R_m can be reduced to solving associated systems over R. Hence, the computability of R implies that of R_m. As a corollary we obtain the computability of the category of finitely presented R_m-modules as an Abelian category, without the need of a Mora-like algorithm. The reduction also yields, as a by-product, a complexity estimation for the ideal membership problem over local polynomial rings. Finally, in the case of localized polynomial rings we demonstrate the computational advantage of our homologically motivated alternative approach in comparison to an existing implementation of Mora's algorithm.
Barakat Mohamed
Lange-Hegermann Markus
No associations
LandOfFree
An Axiomatic Setup for Algorithmic Homological Algebra and an Alternative Approach to Localization does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with An Axiomatic Setup for Algorithmic Homological Algebra and an Alternative Approach to Localization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An Axiomatic Setup for Algorithmic Homological Algebra and an Alternative Approach to Localization will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-455508