Other
Scientific paper
Jun 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009jgre..11406002m&link_type=abstract
Journal of Geophysical Research, Volume 114, Issue E6, CiteID E06002
Other
2
Electromagnetics: Wave Propagation (2487, 3285, 4275, 4455, 6934), Electromagnetics: Transient And Time Domain, Electromagnetics: Numerical Methods, Radio Science: Ionospheric Propagation (0689, 2487, 3285, 4275, 4455), Radio Science: Signal Processing (0674)
Scientific paper
A numerical simulation of Titan's electromagnetic cavity in the VLF band is carried out using the Transmission Line Matrix (TLM) method, with the aim of assessing the VLF electric field spectra sent by the Huygens probe. In an Earth-like model, successive peaks would be expected in the spectra, associated with multiple reflections of the electromagnetic wave on the external surfaces of Titan's electromagnetic cavity, formed by the ionosphere and a conductive ground or underground surface. However, owing to high losses conferred by the electrical conductivity to Titan's atmosphere, the direct numerical and experimental spectra are decreasing functions of the frequency without resonances or other special forms. The weak atmospheric resonances are extracted from the data measured by the Huygens's sensors after a procedure based on analysis of the late time response is applied to the experimental spectra. The new late time spectra present the appearance expected, with successive peaks and a mean between adjacent resonances of 0.67 kHz, in agreement with the late time TLM results when the Borucki et al. (2006) conductivity profile with aerosols is introduced in the numerical model. This gap in frequency between successive peaks gives an effective optical distance between the ground and the conductive ionosphere of approximately 220 km, considerably higher than the terrestrial one where this distance is around 75 km.
Blanchard Cedric
Morente Juan A.
Navarro Enrique A.
Portí Jorge A.
Salinas Alfonso
No associations
LandOfFree
An analysis of VLF electric field spectra measured in Titan's atmosphere by the Huygens probe does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with An analysis of VLF electric field spectra measured in Titan's atmosphere by the Huygens probe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An analysis of VLF electric field spectra measured in Titan's atmosphere by the Huygens probe will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1630699