An analogue of the Cartan decomposition for p-adic reductive symmetric spaces

Mathematics – Representation Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

33 pages

Scientific paper

Let F be a non Archimedean locally compact field of residue characteristic different from 2, let G be a connected reductive group defined over F, let s be an involutive F-automorphism of G and H an open F-subgroup of the fixed points group of s. We denote by G(F) (resp. H(F)) the group of F-points of G (resp. H). In this paper, we obtain an analogue of the Cartan decomposition for the reductive symmetric space G(F)/H(F). More precisely, we obtain a decomposition of G(F) as a union of H(F)-cosets which is related to the H(F)-conjugacy classes of maximal s-anti-invariant F-split tori in G. When G is F-split, we get a more precise result, involving the stabilizer of a special point of the Bruhat-Tits building of G over F.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

An analogue of the Cartan decomposition for p-adic reductive symmetric spaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with An analogue of the Cartan decomposition for p-adic reductive symmetric spaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An analogue of the Cartan decomposition for p-adic reductive symmetric spaces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-315807

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.