Mathematics – Algebraic Geometry
Scientific paper
2002-11-18
Mathematics
Algebraic Geometry
18 pages, latex2e file
Scientific paper
This work makes a parallel construction for curves on threefolds to a ``current-theoretic'' proof of Abel's theorem giving the rational equivalence of divisors P and Q on a Riemann surface when Q - P is (equivalent to) zero in the Jacobian variety of the Riemann surface. The parallel construction is made for homologous ''sub-canonical'' curves P and Q on a general class of threefolds. If P and Q are algebraically equivalent and Q - P is zero in the (intermediate) Jacobian of a threefold, the construction ''almost'' gives rational equivalence.
No associations
LandOfFree
An analogue of Abel's theorem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with An analogue of Abel's theorem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An analogue of Abel's theorem will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-508962