An Alternate View of Venus

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

5405 Atmospheres: Composition And Chemistry, 5407 Atmospheres: Evolution, 5409 Atmospheres: Structure And Dynamics, 5418 Heat Flow, 5455 Origin And Evolution

Scientific paper

Overwhelming physical evidence has been present since Pioneer Venus (PV), indicating that Venus is a hot new planet. I maintain that a fireball, with a mass some ten times that of Venus, rebounded from a high energy impact (1043 ergs) on Jupiter 6,000 years ago. Heating due to the gravitational contraction of the ejected material along with tidal and electromagnetic braking at subsequent perihelion passes produced temperatures >10,000 K. The rapid conversion of orbital energy to heat reduced proto-Venus' eccentricity and expelled the lighter atoms into space, resulting in a high average density terrestrial body. Differentiation of heavy elements and fractionation of naturally radioactive elements occurred quickly. Subsequent close planetary interactions resulted in its final orbit and uplifted the continents, by means of which the tidal force of the Earth induced Venus' spin orbit resonance. This process left much volatile material in interplanetary space, for later acquisition by the proto-planet as it cooled and by extant planets. I maintain that this is the genesis of all terrestrial bodies. Corroborating evidence exists in the form of upwelling radiation measurements from five independent PV probes, all indicating that Venus is radiating 20 w/m2. Due to its recent catastrophic origin, the interior is molten rock with a tenuous crust less than a kilometer thick. Venus' rapid cooling is manifested by two processes: (1) Via radiation from raw lava lying in many surface cracks, radiation which was so strong, that the PV LIR (sensitive infrared radiometer) data collected below the lower cloud layer was discarded; (2) The high velocity expulsion, from 200,000 small domes, of massive quantities of S8, which shoots to an altitude of 48 km. Evidence for (2) stems from the temperatures of three interfaces in the lower atmosphere. The surface temperature is maintained just above 444.5 C, the boiling point of S8, by the evaporation of raining sulfur. The altitude of the ubiquitous lower cloud layer corresponds to the exact temperatures at which the rising S8 gas freezes to form monoclinic (119.2 C) and rhombic (96. C) crystals. These comprise the lower cloud layer and catalyze reactions which capture sulfur, creating a sulfur 'cap.' The energy being released at this level was measured as a +20 C temperature offset. This hot rising S8 flux was so intense that it disabled the sensors on all the PV probes at 14 km (40,000 feet!) CS also apparently crystalizes (200. C) from the rising gases at 31 km causing the thin red haze which extends upward to the lower cloud layer. CS crystals catalyze reactions which capture carbon in that altitude range. This caused the `dropout' of CO2, CO and COS between 31 and 50 km, in the PV mass spec data, not a clogging of the input leak. Thus S8 dominates the lower atmosphere, and it is the great mass of sulfur suspended there which produces the high surface pressure, not CO2. S8 was not detected because it is beyond the mass range of the PV instruments. This paradigm reveals the driving force behind the 'four day' zonal winds, which encircle the planet at all latitudes. S8 jetting vertically from 200,000 small domes, is continuously transferring angular momentum from the slowly rotating planet to the atmosphere. Venus' atmosphere is composed of two altitude regimes. The sulfur dominated 'Hadesphere' extends from the surface to 50 km. The upper atmosphere, captured from interactions with Mars or reacquired from interplanetary space, exhibits earthlike temperatures and pressures. As Venus cools and the intensity of the jetting sulfur gases decreases, the Hadesphere will gradually collapse, bringing the normal atmosphere down to the surface.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

An Alternate View of Venus does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with An Alternate View of Venus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An Alternate View of Venus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1721580

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.