Mathematics – Commutative Algebra
Scientific paper
2011-04-11
Mathematics
Commutative Algebra
15 pages, many statements clarified and numerous other substantial improvements to the exposition (thanks to the referees). To
Scientific paper
Let $R$ be a ring of prime characteristic $p$, and let $F^e_* R$ denote $R$ viewed as an $R$-module via the $e$th iterated Frobenius map. Given a surjective map $\phi : F^e_* R \to R$ (for example a Frobenius splitting), we exhibit an algorithm which produces all the $\phi$-compatible ideals. We also explore a variant of this algorithm under the hypothesis that $\phi$ is not necessarily a Frobenius splitting (or even surjective). This algorithm, and the original, have been implemented in Macaulay2.
Katzman Mordechai
Schwede Karl
No associations
LandOfFree
An algorithm for computing compatibly Frobenius split subvarieties does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with An algorithm for computing compatibly Frobenius split subvarieties, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An algorithm for computing compatibly Frobenius split subvarieties will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-58657