Amino acids in Antarctic CM1 meteorites and their relationship to other carbonaceous chondrites

Computer Science – Performance

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8

Scientific paper

CM2 carbonaceous chondrites are the most primitive material present in the solar system, and some of their subtypes, the CM and CI chondrites, contain up to 2 wt% of organic carbon. The CM2 carbonaceous chondrites contain a wide variety of complex amino acids, while the CI1 meteorites Orgueil and Ivuna display a much simpler composition, with only glycine and β-alanine present in significant abundances. CM1 carbonaceous chondrites show a higher degree of aqueous alteration than CM2 types and therefore provide an important link between the CM2 and CI1 carbonaceous chondrites. Relative amino acid concentrations have been shown to be indicative for parent body processes with respect to the formation of this class of compounds. In order to understand the relationship of the amino acid composition between these three types of meteorites, we have analyzed for the first time three Antarctic CM1 chondrites, Meteorite Hills (MET) 01070, Allan Hills (ALH) 88045, and LaPaz Icefield (LAP) 02277, using gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography-fluorescence detection (HPLC-FD). The concentrations of the eight most abundant amino acids in these meteorites were compared to those of the CM2s Murchison, Murray, Mighei, Lewis Cliff (LEW) 90500, ALH 83100, as well as the CI1s Orgueil and Ivuna. The total amino acid concentration in CM1 carbonaceous chondrites was found to be much lower than the average of the CM2s. Relative amino acid abundances were compared in order to identify synthetic relationships between the amino acid compositions in these meteorite classes. Our data support the hypothesis that amino acids in CM- and CI-type meteorites were synthesized under different physical and chemical conditions and may best be explained with differences in the abundances of precursor compounds in the source regions of their parent bodies in combination with the decomposition of amino acids during extended aqueous alteration.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Amino acids in Antarctic CM1 meteorites and their relationship to other carbonaceous chondrites does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Amino acids in Antarctic CM1 meteorites and their relationship to other carbonaceous chondrites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Amino acids in Antarctic CM1 meteorites and their relationship to other carbonaceous chondrites will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1813696

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.