Computer Science – Other Computer Science
Scientific paper
2004-03-04
Computer Science
Other Computer Science
Scientific paper
${\cal U}$ntil now the representation (i.e. plotting) of curve in Parallel Coordinates is constructed from the point $\leftrightarrow$ line duality. The result is a ``line-curve'' which is seen as the envelope of it's tangents. Usually this gives an unclear image and is at the heart of the ``over-plotting'' problem; a barrier in the effective use of Parallel Coordinates. This problem is overcome by a transformation which provides directly the ``point-curve'' representation of a curve. Earlier this was applied to conics and their generalizations. Here the representation, also called dual, is extended to all planar algebraic curves. Specifically, it is shown that the dual of an algebraic curve of degree $n$ is an algebraic of degree at most $n(n - 1)$ in the absence of singular points. The result that conics map into conics follows as an easy special case. An algorithm, based on algebraic geometry using resultants and homogeneous polynomials, is obtained which constructs the dual image of the curve. This approach has potential generalizations to multi-dimensional algebraic surfaces and their approximation. The ``trade-off'' price then for obtaining {\em planar} representation of multidimensional algebraic curves and hyper-surfaces is the higher degree of the image's boundary which is also an algebraic curve in $\|$-coords.
No associations
LandOfFree
Algebraic Curves in Parallel Coordinates - Avoiding the "Over-Plotting" Problem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Algebraic Curves in Parallel Coordinates - Avoiding the "Over-Plotting" Problem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Algebraic Curves in Parallel Coordinates - Avoiding the "Over-Plotting" Problem will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-650467