Aircraft Proximity Maps Based on Data-Driven Flow Modeling

Computer Science – Systems and Control

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

With the forecast increase in air traffic demand over the next decades, it is imperative to develop tools to provide traffic flow managers with the information required to support decision making. In particular, decision-support tools for traffic flow management should aid in limiting controller workload and complexity, while supporting increases in air traffic throughput. While many decision-support tools exist for short-term traffic planning, few have addressed the strategic needs for medium- and long-term planning for time horizons greater than 30 minutes. This paper seeks to address this gap through the introduction of 3D aircraft proximity maps that evaluate the future probability of presence of at least one or two aircraft at any given point of the airspace. Three types of proximity maps are presented: presence maps that indicate the local density of traffic; conflict maps that determine locations and probabilities of potential conflicts; and outliers maps that evaluate the probability of conflict due to aircraft not belonging to dominant traffic patterns. These maps provide traffic flow managers with information relating to the complexity and difficulty of managing an airspace. The intended purpose of the maps is to anticipate how aircraft flows will interact, and how outliers impact the dominant traffic flow for a given time period. This formulation is able to predict which "critical" regions may be subject to conflicts between aircraft, thereby requiring careful monitoring. These probabilities are computed using a generative aircraft flow model. Time-varying flow characteristics, such as geometrical configuration, speed, and probability density function of aircraft spatial distribution within the flow, are determined from archived Enhanced Traffic Management System data, using a tailored clustering algorithm. Aircraft not belonging to flows are identified as outliers.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Aircraft Proximity Maps Based on Data-Driven Flow Modeling does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Aircraft Proximity Maps Based on Data-Driven Flow Modeling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aircraft Proximity Maps Based on Data-Driven Flow Modeling will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-418341

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.