Mathematics – Logic
Scientific paper
Aug 2004
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004geo....32..677m&link_type=abstract
Geology, vol. 32, Issue 8, p.677
Mathematics
Logic
6
Scientific paper
Mineralogic features attributed to impact-induced shock metamorphism are commonly observed in meteorites and terrestrial impact craters. Partly because the duration of shock metamorphism is very short, constraining the timing and temperature of shock events has been problematic. We measured (U-Th)/He ages of single grains of merrillite and chlorapatite from the Martian meteorite Los Angeles (LA). Merrillite and chlorapatite ages cluster at 3.28 ± 0.15 Ma (2σ) and 2.18 ± 0.19 (2σ) Ma, respectively. The mean age of the merrillites, which are larger than chlorapatites, is indistinguishable from cosmic-ray exposure ages (3.1 ± 0.2 Ma), suggesting that impact-induced shock metamorphism was coeval with ejection of the LA precursor from Mars. To constrain the initial temperature of shock metamorphism in the LA precursor body, we modeled diffusive loss of He from merrillite as a function of diffusion domain size, LA precursor body size, and ablation depth. From these calculations, we suggest that the metamorphic temperature of the shock event was higher than 450 °C. These results support the idea that shock pressures of the Martian meteorite Shergotty were higher than 45 GPa, as inferred from the presence of post-stishovite SiO2 polymorphs. Single-grain (U-Th)/He dating of phosphates may provide unique constraints on the timing and pressure-temperature dynamics of shock metamorphism in a wide variety of extraterrestrial materials.
Greenwood James Paul
Min Kyoungwon
Nicolescu Stefan
Reiners Peter W.
No associations
LandOfFree
Age and temperature of shock metamorphism of Martian meteorite Los Angeles from (U-Th)/He thermochronometry does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Age and temperature of shock metamorphism of Martian meteorite Los Angeles from (U-Th)/He thermochronometry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Age and temperature of shock metamorphism of Martian meteorite Los Angeles from (U-Th)/He thermochronometry will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1174138