Mathematics – Logic
Scientific paper
Sep 1999
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1999smtp.conf...18m&link_type=abstract
Studies of Mineralogical and Textural Properties of Martian Soil: An Exobiological Perspective, p. 18
Mathematics
Logic
Aerodynamic Forces, Mars (Planet), Sands, Sediment Transport, Wind Effects, Dust Storms, Stretching, Mars Surface, Wind (Meteorology), Experimentation
Scientific paper
The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 micron-diameter grains into similar material. Elastic energy deposited in the bed by the impacting grain creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains from closed to open packing, and grains are consequently able to eject themselves forcefully from the impact site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. There is a great temptation to draw parallels with cratering produced by meteorite impacts, but a rigorous search for common modelling ground between the two phenomena has not been conducted at this time. For every impact of an aerodynamically energized grain, there are several hundred grains ejected into the wind for the high-energy transport that might occur on Mars. Many of these grains will themselves become subject to the boundary layer's aerodynamic lift forces (their motion will not immediately die and add to the creep population), and these grains will become indistinguishable from those lifted entirely by aerodynamic forces. As each grain impacts the bed, it will eject even more grains into the flow. A cascading effect will take place, but because it must be finite in its growth, damping will occur as the number of grains set in motion causes mid-air collisions that prevent much of the impact energy from reaching the surface of the bed -thus creating a dynamic equilibrium in a high-density saltation cloud. It is apparent that for a given impact energy, the stress field permits a smaller volume of grains to convert to open packing as the size of the bed grains increases, or as the energy of the "percussive" grain decreases (by decrease in velocity or mass). Thus, the mass of the "repercussive" grain population that is ejected from the impact site becomes a function of the scale of the stress field in relation to the scale of the bed material (self-similarity being applicable if both bed size and energy are simultaneously adjusted). In other words, in a very high energy aeolian system where an aerodynamically raised grain can ballistically raise many more grains, the amount of material lifted into the wind becomes largely a function of a dilatancy threshold. If this threshold is exceeded, grains are repercussively injected into the saltation cloud. The "dilatancy threshold" may be defined in terms of the saltation percussive force required to convert the bed, through elastic response, from a closed to an open packing system. If open packing cannot be created, the grains cannot escape from the impact site, even though the elastic deformation and percussive force may be able to reorganize the grains with respect to one another. As the crossbow experiments showed, for an ever-increasing bed grain size, a point is reached when no material can be moved because the energy of the percussive grain is insufficient to dilate the relatively coarse bed. Although this seems to be stating the obvious -- that too little energy will not cause the bed to splash -- the consequences of exceeding the "splash threshold" by dilatancy are not so obvious for high-energy aeolian transport. It is noted that the force required to elastically dilate the bed has to overcome Coulombic grain attractions such as dipole-dipole coupling, dielectric, monopole, contact-induced dipole attractions, van der Waals forces, molecular monolayer capillary forces, as well as the mechanical interlocking frictional resistance of the grains. On Mars, it is predicted that the dilatancy threshold may be the prime control of grain flux. Additional information is contained in the original.
Borucki J.
Bratton Clayton
Marshall Jonathan R.
No associations
LandOfFree
Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-989693