Statistics – Methodology
Scientific paper
2009-03-26
Statistics
Methodology
Scientific paper
This paper offers a new method for estimation and forecasting of the volatility of financial time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as GARCH, whose coefficients may arbitrarily vary with time. Global parametric, smooth transition, and change-point models are special cases. The method is based on an adaptive pointwise selection of the largest interval of homogeneity with a given right-end point by a local change-point analysis. We construct locally adaptive estimates that can perform this task and investigate them both from the theoretical point of view and by Monte Carlo simulations. In the particular case of GARCH estimation, the proposed method is applied to stock-index series and is shown to outperform the standard parametric GARCH model.
Čížek P.
Härdle Wolfgang
Spokoiny Vladimir
No associations
LandOfFree
Adaptive pointwise estimation in time-inhomogeneous conditional heteroscedasticity models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Adaptive pointwise estimation in time-inhomogeneous conditional heteroscedasticity models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adaptive pointwise estimation in time-inhomogeneous conditional heteroscedasticity models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-65030