Acoustic and MHD Wave Energy Fluxes for Late-Type Stars

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

The vast amount of observational data collected at wavelengths ranging from X-rays to radio waves have indicated the ubiquity of stellar chromospheres among late-type stars. In addition, there is growing observational evidence for inhomogeneous and locally strong magnetic fields in stellar atmospheres. It is reasonable to assume that stellar magnetic inhomogeneities may be similar to the `flux tube' structures observed in the solar atmosphere outside sunspots. If so, two distinct components of stellar chromospheres must be recognized, namely, non-magnetic component, where acoustic waves are responsible for the heating, and magnetic component, where MHD tube waves supply energy for the heating. To construct theoretical models of stellar chromospheres (see paper by Cuntz et al. presented at this meeting), it is necessary to know the amount of non-radiative energy generated in stellar convective zones and carried by acoustic and MHD tube waves through stellar photospheres. In this paper, we discuss the correct status of computing acoustic and MHD wave energy fluxes for the Sun and late-type dwarfs. Our calculations are based on grey LTE mixing-length convection zone models and both linear and non-linear theories of wave generation are used. New acoustic and MHD wave energy fluxes are presented for stars of population I and II in the range of effective temperatures T_eff 2000 - 10000 K and gravities log g = 1 - 8. The turbulent flow field is represented by an extended Kolmogorov spatial and modified Gaussian temporal energy spectrum. The mixing-length parameter is varied in the range alpha = 1 - 2. We find that the obtained acoustic wave energy strongly depend on stellar chemical composition and that MHD fluxes show wide variations for a given spectral type, variations which can be attributed to changes in the stellar flux tube filling factor. We discuss the range of the filling factor for which the calculated MHD fluxes may account for the observed levels of chromospheric activity.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Acoustic and MHD Wave Energy Fluxes for Late-Type Stars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Acoustic and MHD Wave Energy Fluxes for Late-Type Stars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Acoustic and MHD Wave Energy Fluxes for Late-Type Stars will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1173019

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.