Astronomy and Astrophysics – Astrophysics
Scientific paper
2002-12-04
Astronomy and Astrophysics, 2001, v.376, p.697-707
Astronomy and Astrophysics
Astrophysics
14 single column pages. 7 black and white encapsulated post-script figures. Published in A & A
Scientific paper
10.1051/0004-6361:20010992
Using full general relativistic calculations, we investigate the possibility of generation of mass outflow from spherical accretion onto non-rotating black holes. Introducing a relativistic hadronic-pressure-supported steady, standing, spherically-symmetric shock surface around a Schwarzschild black hole as the effective physical barrier that may be responsible for the generation of spherical wind, we calculate the mass outflow rate $R_{\dot m}$ in terms of three accretion parameters and one outflow parameter by simultaneously solving the set of general relativistic hydrodynamic equations describing spherically symmetric, transonic, polytropic accretion and wind around a Schwarzschild black hole. Not only do we provide a sufficiently plausible estimation of $R_{\dot m}$, we also successfully study the dependence and variation of this rate on various physical parameters governing the flow. Our calculation indicates that independent of initial boundary conditions, the baryonic matter content of this shock-generated wind always correlates with post-shock flow temperature.
No associations
LandOfFree
Accretion powered spherical wind in general relativity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Accretion powered spherical wind in general relativity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Accretion powered spherical wind in general relativity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-264183