Accretion Disks Around Binary Black Holes: A Quasistationary Model

Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14 pages, 6 figures, minor changes to match the PRD version

Scientific paper

10.1103/PhysRevD.82.123011

Tidal torques acting on a gaseous accretion disk around a binary black hole can create a gap in the disk near the orbital radius. At late times, when the binary inspiral timescale due to gravitational wave emission becomes shorter than the viscous timescale in the disk, the binary decouples from the disk and eventually merges. Prior to decoupling the balance between tidal and viscous torques drives the disk to a quasistationary equilibrium state, perturbed slightly by small amplitude, spiral density waves emanating from the edges of the gap. We consider a black hole binary with a companion of smaller mass and construct a simple Newtonian model for a geometrically thin, Keplerian disk in the orbital plane of the binary. We solve the disk evolution equations in steady state to determine the quasistationary, (orbit-averaged) surface density profile prior to decoupling. We use our solution, which is analytic up to simple quadratures, to compute the electromagnetic flux and approximate radiation spectrum during this epoch. A single nondimensional parameter Td/Tvis, equal to the ratio of the tidal to viscous torque at the orbital radius, determines the disk structure, including the surface density profile, the extent of the gap, the existence of an inner disk, and the accretion rate. The solution reduces to the Shakura-Sunyaev profile for a stationary accretion disk around a single black hole in the limit of small Td/Tvis. Our solution may be useful for choosing physical parameters and setting up quasistationary disk initial data for detailed numerical simulations that begin prior to decoupling and track the subsequent evolution of a black hole binary-disk system.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Accretion Disks Around Binary Black Holes: A Quasistationary Model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Accretion Disks Around Binary Black Holes: A Quasistationary Model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Accretion Disks Around Binary Black Holes: A Quasistationary Model will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-404736

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.