Astronomy and Astrophysics – Astronomy
Scientific paper
Aug 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006apj...647.1535c&link_type=abstract
The Astrophysical Journal, Volume 647, Issue 2, pp. 1535-1542.
Astronomy and Astrophysics
Astronomy
10
Astrochemistry, Methods: Laboratory, Molecular Data
Scientific paper
Cross sections for photoabsorption of NH3, NH2D, NHD2, and ND3 in the spectral region 140-220 nm were determined at ~298 K using synchrotron radiation. Absorption spectra of NH2D and NHD2 were deduced from spectra of mixtures of NH3 and ND3, of which the equilibrium concentrations for all four isotopologues obey statistical distributions. Cross sections of NH2D, NHD2, and ND3 are new. Oscillator strengths, an integration of absorption cross sections over the spectral lines, for both A<--X and B<--X systems of NH3 agree satisfactorily with previous reports; values for NH2D, NHD2, and ND3 agree with quantum chemical predictions. The photolysis of NH3 provides a major source of reactive hydrogen in the lower stratosphere and upper troposphere of giant planets such as Jupiter. Incorporating the measured photoabsorption cross sections of NH3 and NH2D into the Caltech/JPL photochemical diffusive model for the atmosphere of Jupiter, we find that the photolysis efficiency of NH2D is lower than that of NH3 by as much as 30%. The D/H ratio in NH2D/NH3 for tracing the microphysics in the troposphere of Jupiter is also discussed.
Bahou Mohammed
Chen Hong-Kai
Cheng Bing-Ming
Lee Clarence L.
Lee Yuan-Pern
No associations
LandOfFree
Absorption Cross Sections of NH3, NH2D, NHD2, and ND3 in the Spectral Range 140-220 nm and Implications for Planetary Isotopic Fractionation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Absorption Cross Sections of NH3, NH2D, NHD2, and ND3 in the Spectral Range 140-220 nm and Implications for Planetary Isotopic Fractionation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Absorption Cross Sections of NH3, NH2D, NHD2, and ND3 in the Spectral Range 140-220 nm and Implications for Planetary Isotopic Fractionation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1131826