Mathematics – Analysis of PDEs
Scientific paper
2009-08-05
Mathematics
Analysis of PDEs
20 pages
Scientific paper
On any compact Riemannian manifold $(M, g)$ of dimension $n$, the $L^2$-normalized eigenfunctions ${\phi_{\lambda}}$ satisfy $||\phi_{\lambda}||_{\infty} \leq C \lambda^{\frac{n-1}{2}}$ where $-\Delta \phi_{\lambda} = \lambda^2 \phi_{\lambda}.$ The bound is sharp in the class of all $(M, g)$ since it is obtained by zonal spherical harmonics on the standard $n$-sphere $S^n$. But of course, it is not sharp for many Riemannian manifolds, e.g. flat tori $\R^n/\Gamma$. We say that $S^n$, but not $\R^n/\Gamma$, is a Riemannian manifold with maximal eigenfunction growth. The problem which motivates this paper is to determine the $(M, g)$ with maximal eigenfunction growth. In an earlier work, two of us showed that such an $(M, g)$ must have a point $x$ where the set ${\mathcal L}_x$ of geodesic loops at $x$ has positive measure in $S^*_x M$. We strengthen this result here by showing that such a manifold must have a point where the set ${\mathcal R}_x$ of recurrent directions for the geodesic flow through x satisfies $|{\mathcal R}_x|>0$. We also show that if there are no such points, $L^2$-normalized quasimodes have sup-norms that are $o(\lambda^{n-1)/2})$, and, in the other extreme, we show that if there is a point blow-down $x$ at which the first return map for the flow is the identity, then there is a sequence of quasi-modes with $L^\infty$-norms that are $\Omega(\lambda^{(n-1)/2})$.
Sogge Christopher D.
Toth John A.
Zelditch Steve
No associations
LandOfFree
About the blowup of quasimodes on Riemannian manifolds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with About the blowup of quasimodes on Riemannian manifolds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and About the blowup of quasimodes on Riemannian manifolds will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-255019