Astronomy and Astrophysics – Astrophysics
Scientific paper
2003-03-12
Astrophys.J. 591 (2003) 53-78
Astronomy and Astrophysics
Astrophysics
ApJ, in press. 26 pages including 18 figures. Version with high resolution figures available at http://www.astro.caltech.edu/~
Scientific paper
10.1086/375314
We describe a new wide field Hubble Space Telescope survey of the galaxy cluster Cl0024+16 (z~0.4) consisting of a sparse-sampled mosaic of 39 Wide Field and Planetary Camera 2 images which extends to a cluster radius of 5 Mpc. [Abridged] We examine both the morphology-radius (T-R) and morphology-density (T-Sigma) relations and demonstrate sensitivities adequate for measures from the core to a radius of 5 Mpc, spanning over 3 decades in local projected density. The fraction of early-type galaxies declines steeply from the cluster center to 1 Mpc radius and more gradually thereafter, asymptoting towards the field value at the periphery. We discuss our results in the context of three distinct cluster zones, defined according to different physical processes that may be effective in transforming galaxy morphology in each. By treating infalling galaxies as isolated test particles, we deduce that the most likely processes responsible for the mild gradient in the morphological mix outside the virial radius are harassment and starvation. Although more data are needed to pin down the exact mechanisms, starvation seems more promising in that it would naturally explain the stellar and dynamical homogeneity of cluster E/S0s. However, we find significant scatter in the local density at any given radius outside 0.5 Mpc, and that the same T-Sigma relation holds in subregions of the cluster, independent of location. In this hitherto unprobed region, where the potential of the cluster is weak, galaxies apparently retain their identities as members of infalling sub-groups whose characteristic morphological properties remain intact. Only upon arrival in the central regions is the substructure erased, as indicated by the tight correlation between cluster radius and Sigma.
Czoske Oliver
Dressler Alan
Ellis Richard S.
Kneib Jean Paul
Natarajan Priyamvada
No associations
LandOfFree
A wide field Hubble Space Telescope study of the cluster CL0024+16 at z=0.4. I: morphological distributions to 5 Mpc radius does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A wide field Hubble Space Telescope study of the cluster CL0024+16 at z=0.4. I: morphological distributions to 5 Mpc radius, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A wide field Hubble Space Telescope study of the cluster CL0024+16 at z=0.4. I: morphological distributions to 5 Mpc radius will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-205078