Computer Science – Learning
Scientific paper
2011-06-07
Computer Science
Learning
Scientific paper
Given a set $F$ of $n$ positive functions over a ground set $X$, we consider the problem of computing $x^*$ that minimizes the expression $\sum_{f\in F}f(x)$, over $x\in X$. A typical application is \emph{shape fitting}, where we wish to approximate a set $P$ of $n$ elements (say, points) by a shape $x$ from a (possibly infinite) family $X$ of shapes. Here, each point $p\in P$ corresponds to a function $f$ such that $f(x)$ is the distance from $p$ to $x$, and we seek a shape $x$ that minimizes the sum of distances from each point in $P$. In the $k$-clustering variant, each $x\in X$ is a tuple of $k$ shapes, and $f(x)$ is the distance from $p$ to its closest shape in $x$. Our main result is a unified framework for constructing {\em coresets} and {\em approximate clustering} for such general sets of functions. To achieve our results, we forge a link between the classic and well defined notion of $\eps$-approximations from the theory of PAC Learning and VC dimension, to the relatively new (and not so consistent) paradigm of coresets, which are some kind of "compressed representation" of the input set $F$. Using traditional techniques, a coreset usually implies an LTAS (linear time approximation scheme) for the corresponding optimization problem, which can be computed in parallel, via one pass over the data, and using only polylogarithmic space (i.e, in the streaming model). We show how to generalize the results of our framework for squared distances (as in $k$-mean), distances to the $q$th power, and deterministic constructions.
Feldman Dan
Langberg Michael
No associations
LandOfFree
A Unified Framework for Approximating and Clustering Data does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Unified Framework for Approximating and Clustering Data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Unified Framework for Approximating and Clustering Data will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-27113