Astronomy and Astrophysics – Astrophysics
Scientific paper
May 1979
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1979a%26a....75..114s&link_type=abstract
Astronomy and Astrophysics, vol. 75, no. 1-2, May 1979, p. 114-119. Research supported by the Deutsche Forschungsgemeinschaft.
Astronomy and Astrophysics
Astrophysics
1
Cosmic Rays, Particle Diffusion, Propagation (Extension), Radioactive Isotopes, Astronomical Models, Monte Carlo Method, Secondary Cosmic Rays
Scientific paper
The astrophysical interpretations of all the cosmic ray observations depend very much on the model which one uses to describe the propagation of cosmic rays through the interstellar space. Usually one treats the galaxy as a 'leaky box' and considers the cosmic rays to be in spatial and temporal equilibrium. One further assumes that the interstellar matter is homogeneously distributed. Various attempts have been made to deduce this mean matter density by means of the surviving fraction alpha of radioactive secondary isotopes in order to pinpoint the regions where the cosmic rays may mainly reside. In this paper it is shown that such attempts lead to ambiguous conclusions if one accepts a more realistic picture of a nonhomogeneous distribution of interstellar matter. For these investigations a Monte Carlo Propagation Program has been developed in order to follow the fate of individual cosmic ray particles through space by varying the densities and mean path lengths in different regions. The effect on the surviving fraction alpha has been quantitatively calculated and discussed.
Enge W.
Scherzer R.
Simon Manfred
No associations
LandOfFree
A two-zone propagation model applied to radioactive cosmic ray isotopes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A two-zone propagation model applied to radioactive cosmic ray isotopes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A two-zone propagation model applied to radioactive cosmic ray isotopes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1701597