Astronomy and Astrophysics – Astrophysics
Scientific paper
2005-11-24
Mon.Not.Roy.Astron.Soc.366:1310-1328,2006
Astronomy and Astrophysics
Astrophysics
39 pages, 12 figures. Accepted for publication in MNRAS
Scientific paper
10.1111/j.1365-2966.2006.09904.x
A two-dimensional electrodynamical model is used to study particle acceleration in the outer magnetosphere of a pulsar. The charge depletion from the Goldreich-Julian charge density causes a large electric field along the magnetic field lines. The charge particles are accelerated by the electric field and emit $\gamma$-rays via the curvature process. Some of the emitted $\gamma$-rays may collide with $X$-ray photons to make new pairs, which are accelerated again on the different field lines in the gap and proceed similar processes. We simulate the pair creation cascade in the meridional plane using the pair creation mean-free path, in which the $X$-ray photon number density is proportional to inverse square of radial distance. With the space charge density determined by the pair creation simulation, we solve the electric structure of the outer gap in the meridional plane and calculate the curvature spectrum. Because the two-dimensional model can link both gap width along the magnetic field line and trans-field thickness with the spectral cut-off energy and flux, we can diagnose both the current through the gap and inclination angle between the rotational and magnetic axes. We apply the theory to the Vela pulsar. By comparing the results with the $EGRET$ data, we rule out any cases that have a large particle injection at the outer boundary. We also suggest the inclination angle of $\alpha_{inc}\geq65^{\circ}$. The present model predicts the outer gap starting from near the conventional null charge surface for the Vela pulsar.
Chang Hsiang Kuang
Hirotani Kouichi
Shibata Shinpei
Takata Jumpei
No associations
LandOfFree
A two-dimensional electrodynamical outer gap model for gamma-ray pulsars: Gamma-ray spectrum does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A two-dimensional electrodynamical outer gap model for gamma-ray pulsars: Gamma-ray spectrum, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A two-dimensional electrodynamical outer gap model for gamma-ray pulsars: Gamma-ray spectrum will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-424273