Computer Science – Performance
Scientific paper
Aug 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007cqgra..24.3965m&link_type=abstract
Classical and Quantum Gravity, Volume 24, Issue 16, pp. 3965-3974 (2007).
Computer Science
Performance
4
Scientific paper
We report the performance of an instrument that employs a torsion balance for probing a non-standard force in the sub-micrometre range. High sensitivity of 1.2 × 10-10 N Hz-1/2 at 1 mHz is achieved by using a torsion balance that has a long torsional period, strong magnetic damping of all vibrational motions and a feedback system that employs an optical lever. In torsion balance experiments, the distance fluctuations during measurements and the accuracy to which the absolute distance is determined are crucial for determining the sensitivity of the balance to a macroscopic force in the sub-micrometre range. We have estimated the root mean square amplitude of the distance fluctuation to be 18 nm by considering the effects due to seismic motions, tilt motions, residual angular fluctuations and thermal fluctuations. We have also estimated the error of the absolute distance to be 13 nm and the statistical error of the force to be 3.4 × 10-12 N by measuring the electrostatic forces. As a result of this systematic study, we have evaluated the sensitivity of the balance to both a non-standard force and to the Casimir force.
Araya Akito
Masuda Mikiya
Sasaki Makoto
No associations
LandOfFree
A torsion balance for probing a non-standard force in the sub-micrometre range does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A torsion balance for probing a non-standard force in the sub-micrometre range, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A torsion balance for probing a non-standard force in the sub-micrometre range will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-970671