Astronomy and Astrophysics – Astrophysics – Instrumentation and Methods for Astrophysics
Scientific paper
2011-08-05
Astronomy & Astrophysics, 533:A82, 2011
Astronomy and Astrophysics
Astrophysics
Instrumentation and Methods for Astrophysics
Scientific paper
10.1051/0004-6361/201117305
Context. Narrow-band interference filters can be tuned toward shorter wavelengths by tilting them from the perpendicular to the optical axis. This can be used as a cheap alternative to real tunable filters, such as Fabry-P\'erot interferometers and Lyot filters. At the Swedish 1-m Solar Telescope, such a setup is used to scan through the blue wing of the Ca II H line. Because the filter is mounted in a converging beam, the incident angle varies over the pupil, which causes a variation of the transmission over the pupil, different for each wavelength within the passband. This causes broadening of the filter transmission profile and degradation of the image quality. Aims. We want to characterize the properties of our filter, at normal incidence as well as at different tilt angles. Knowing the broadened profile is important for the interpretation of the solar images. Compensating the images for the degrading effects will improve the resolution and remove one source of image contrast degradation. In particular, we need to solve the latter problem for images that are also compensated for blurring caused by atmospheric turbulence. Methods. We simulate the process of image formation through a tilted interference filter in order to understand the effects. We test the hypothesis that they are separable from the effects of wavefront aberrations for the purpose of image deconvolution. We measure the filter transmission profile and the degrading PSF from calibration data. Results. We find that the filter transmission profile differs significantly from the specifications.We demonstrate how to compensate for the image-degrading effects. Because the filter tilt effects indeed appear to be separable from wavefront aberrations in a useful way, this can be done in a final deconvolution, after standard image restoration with MFBD/Phase Diversity based methods. We illustrate the technique with real data.
Henriques Vasco M. J.
Kiselman Dan
Löfdahl Mats G.
No associations
LandOfFree
A tilted interference filter in a converging beam does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A tilted interference filter in a converging beam, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A tilted interference filter in a converging beam will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-667702