Mathematics – Combinatorics
Scientific paper
2010-03-20
Mathematics
Combinatorics
24 pages
Scientific paper
The well-known Impossibility Theorem of Arrow asserts that any Generalized Social Welfare Function (GSWF) with at least three alternatives, which satisfies Independence of Irrelevant Alternatives (IIA) and Unanimity and is not a dictatorship, is necessarily non-transitive. In 2002, Kalai asked whether one can obtain the following quantitative version of the theorem: For any $\epsilon>0$, there exists $\delta=\delta(\epsilon)$ such that if a GSWF on three alternatives satisfies the IIA condition and its probability of non-transitive outcome is at most $\delta$, then the GSWF is at most $\epsilon$-far from being a dictatorship or from breaching the Unanimity condition. In 2009, Mossel proved such quantitative version, with $\delta(\epsilon)=\exp(-C/\epsilon^{21})$, and generalized it to GSWFs with $k$ alternatives, for all $k \geq 3$. In this paper we show that the quantitative version holds with $\delta(\epsilon)=C \cdot \epsilon^3$, and that this result is tight up to logarithmic factors. Furthermore, our result (like Mossel's) generalizes to GSWFs with $k$ alternatives. Our proof is based on the works of Kalai and Mossel, but uses also an additional ingredient: a combination of the Bonami-Beckner hypercontractive inequality with a reverse hypercontractive inequality due to Borell, applied to find simultaneously upper bounds and lower bounds on the "noise correlation" between Boolean functions on the discrete cube.
No associations
LandOfFree
A tight quantitative version of Arrow's impossibility theorem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A tight quantitative version of Arrow's impossibility theorem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A tight quantitative version of Arrow's impossibility theorem will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-316238