A threshold-based earthquake early warning using dense accelerometer networks

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Earthquake Ground Motions, Earthquake Source Observations, Early Warning

Scientific paper

Most earthquake early warning systems (EEWS) developed so far are conceived as either `regional' (network-based) or `on-site' (stand-alone) systems. The recent implementation of nationwide, high dynamic range, dense accelerometer arrays makes now available, potentially in real time, unsaturated waveforms of moderate-to-large magnitude earthquakes recorded at very short epicentral distances (<10-20 km). This would allow for a drastic increase of the early warning lead-time, for example, the time between the alert notification and the arrival time of potentially destructive waves at a given target site. By analysing strong motion data from modern accelerograph networks in Japan, Taiwan and Italy, we propose an integrated regional/on-site early warning method, which can be used in the very first seconds after a moderate-to-large earthquake to map the most probable damaged zones. The method is based on the real-time measurement of the period (τc) and peak displacement (Pd) parameters at stations located at increasing distances from the earthquake epicentre. The recorded values of early warning parameters are compared to threshold values, which are set for a minimum magnitude 6 and instrumental intensity VII, according to the empirical regression analyses of strong motion data. At each recording site the alert level is assigned based on a decisional table with four alert levels defined upon critical values of the parameters Pd and τc, which are set according to the error bounds estimated on the derived prediction equations. Given a real time, evolutionary estimation of earthquake location from first P arrivals, the method furnishes an estimation of the extent of potential damage zone as inferred from continuously updated averages of the period parameter and from mapping of the alert levels determined at the near-source accelerometer stations. The off-line application of the method to strong motion records of the Mw 6.3, 2009 Central Italy earthquake shows a very consistent match between the rapidly predicted (within a few seconds from the first recorded P wave) and observed damage zone, the latter being mapped from detailed macroseismic surveys a few days after the event. The proposed approach is suitable for Italy, where, during the last two decades, a dense network of wide dynamic-range accelerometer arrays has been deployed by the Department of Civil Protection (DPC), the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and other regional research agencies.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A threshold-based earthquake early warning using dense accelerometer networks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A threshold-based earthquake early warning using dense accelerometer networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A threshold-based earthquake early warning using dense accelerometer networks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1483013

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.