Mathematics – Algebraic Geometry
Scientific paper
2000-02-04
Mathematics
Algebraic Geometry
Dedication reinserted, typos fixed
Scientific paper
Given an effective Q-divisor D on a smooth complex variety, one can associate to D its multiplier ideal sheaf J(D), which measures in a somewhat subtle way the singularities of D. Because of their strong vanishing properties, these ideals have come to play an increasingly important role in higher dimensional geometry. We prove that for two effective Q-divisors D and E, one has the "subadditivity" relation: J(D + E) \subseteq J(D) . J(E) . (We also establish several natural variants, including the analogous statement for the analytic multiplier ideals associated to plurisubharmonic functions.) As an application, we give a new proof of a theorem of Fujita concerning the volume of a big linear series on a projective variety. The first section of the paper contains an overview of the construction and basic properties of multiplier ideals from an algebro-geometric perspective, as well as a discussion of the relation between some asymptotic algebraic constructions and their analytic counterparts.
Demailly Jean-Pierre
Ein Lawrence
Lazarsfeld Robert
No associations
LandOfFree
A Subadditivity Property of Multiplier Ideals does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Subadditivity Property of Multiplier Ideals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Subadditivity Property of Multiplier Ideals will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-233097