Mathematics – Analysis of PDEs
Scientific paper
2005-05-04
Comm. Math. Phys. 266 (2006), no. 3, 631--645
Mathematics
Analysis of PDEs
13 pages, no figures.
Scientific paper
10.1007/s00220-006-0058-5
We prove existence and regularity of the stochastic flows used in the stochastic Lagrangian formulation of the incompressible Navier-Stokes equations (with periodic boundary conditions), and consequently obtain a $\holderspace{k}{\alpha}$ local existence result for the Navier-Stokes equations. Our estimates are independent of viscosity, allowing us to consider the inviscid limit. We show that as $\nu \to 0$, solutions of the stochastic Lagrangian formulation (with periodic boundary conditions) converge to solutions of the Euler equations at the rate of $O(\sqrt{\nu t})$.
No associations
LandOfFree
A stochastic perturbation of inviscid flows does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A stochastic perturbation of inviscid flows, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A stochastic perturbation of inviscid flows will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-592219