Mathematics – Analysis of PDEs
Scientific paper
2010-05-25
Mathematics
Analysis of PDEs
Scientific paper
We derive here a new stability criterion for two-fluid interfaces. This criterion ensures the existence of "stable" local solutions that do no break down too fast due to Kelvin-Helmholtz instabilities. It can be seen both as a two-fluid generalization of the Rayleigh-Taylor criterion and as a nonlinear version of the Kelvin stability condition. We show that gravity can control the inertial effects of the shear up to frequencies that are high enough for the surface tension to play a relevant role. This explains why surface tension is a necessary condition for well-posedness while the (low frequency) main dynamics of interfacial waves is unaffected by it. In order to derive a practical version of this criterion, we work with a nondimensionalized version of the equations and allow for the possibility of various asymptotic regimes, such as the shallow water limit. This limit being singular, we have to derive a new symbolic analysis of the Dirichlet-Neumann operator that includes an infinitely smoothing "tail" accounting for the contribution of the bottom. We then validate our criterion by comparison with experimental data in two important settings: air-water interfaces and internal waves. The good agreement we observe allows us to discuss the scenario of wave breaking and the behavior of water-brine interfaces. We also show how to rigorously justify two-fluid asymptotic models used for applications and how to relate some of their properties to Kelvin-Helmholtz instabilities.
No associations
LandOfFree
A stability criterion for two-fluid interfaces and applications does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A stability criterion for two-fluid interfaces and applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A stability criterion for two-fluid interfaces and applications will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-298214