Astronomy and Astrophysics – Astronomy
Scientific paper
Nov 1999
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1999apj...526..385b&link_type=abstract
The Astrophysical Journal, Volume 526, Issue 1, pp. 385-399.
Astronomy and Astrophysics
Astronomy
159
Acceleration Of Particles, Ism: Cosmic Rays, Shock Waves
Scientific paper
We present a simple model of nonlinear diffusive shock acceleration (also called first-order Fermi shock acceleration) that determines the shock modification, spectrum, and efficiency of the process in the plane-wave, steady state approximation as a function of an arbitrary injection parameter, η. The model, which uses a three-power-law form for the accelerated particle spectrum and contains only simple algebraic equations, includes the essential elements of the full nonlinear model and has been tested against Monte Carlo and numerical kinetic shock models. We include both adiabatic and Alfvén wave heating of the upstream precursor. The simplicity and ease of calculation make this model useful for studying the basic properties of nonlinear shock acceleration, as well as providing results accurate enough for many astrophysical applications. It is shown that the shock properties depend upon the shock speed u0 with respect to a critical value u*0~ηp1/4max, which is a function of the injection rate η and maximum accelerated particle momentum pmax. For u0MA0, or by rtot~1.5M3/8A0 in the opposite case (MS0 is the sonic Mach number and MA0 is the Alfvén Mach number). If u0>u*0, the shock, although still strong, becomes almost unmodified and accelerated particle production decreases inversely proportional to u0.
Berezhko Evgeny G.
Ellison Donald C.
No associations
LandOfFree
A Simple Model of Nonlinear Diffusive Shock Acceleration does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Simple Model of Nonlinear Diffusive Shock Acceleration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Simple Model of Nonlinear Diffusive Shock Acceleration will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1284853