Mathematics – Geometric Topology
Scientific paper
2008-03-05
Journal of Knot Theory and its Ramifications 19, 4 (2010), pp. 461--487
Mathematics
Geometric Topology
26 pages, 19 figures, modified example and updated references
Scientific paper
10.1142/10.1142/S021821651000791
For ordinary knots in R3, there are no degree one Vassiliev invariants. For virtual knots, however, the space of degree one Vassiliev invariants is infinite dimensional. We introduce a sequence of three degree one Vassiliev invariants of virtual knots of increasing strength. We demonstrate that the strongest invariant is a universal Vassiliev invariant of degree one for virtual knots in the sense that any other degree one Vassiliev invariant can be recovered from it by a certain natural construction. To prove these results, we extend the based matrix invariant introduced by Turaev for virtual strings to the class of singular virtual knots with one double-point.
No associations
LandOfFree
A Sequence of Degree One Vassiliev Invariants for Virtual Knots does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Sequence of Degree One Vassiliev Invariants for Virtual Knots, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Sequence of Degree One Vassiliev Invariants for Virtual Knots will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-13249