Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena
Scientific paper
2009-04-21
Astronomy and Astrophysics
Astrophysics
High Energy Astrophysical Phenomena
6 pages, including 3 figures. Final version, including proof corrections, as it will appear in MNRAS
Scientific paper
10.1111/j.1365-2966.2009.15240.x
Iron emission lines at 6.4-6.97 keV, identified with fluorescent Kalpha transitions, are among the strongest discrete features in the X-ray band. These are therefore one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper we present a recent XMM observation of the X-ray burster 4U 1705-44, where we clearly detect a relativistically smeared iron line at about 6.7 keV, testifying with high statistical significance that the line profile is distorted by high velocity motion in the accretion disc. As expected from disc reflection models, we also find a significant absorption edge at about 8.3 keV; this feature appears to be smeared, and is compatible with being produced in the same region where the iron line is produced. From the line profile we derive the physical parameters of the inner accretion disc with large precision. The line is identified with the Kalpha transition of highly ionised iron, Fe XXV, the inner disc radius is Rin = (14 \pm 2) R_g (where R_g is the Gravitational radius, GM/c^2), the emissivity dependence from the disc radius is r^{-2.27 \pm 0.08}, the inclination angle with respect to the line of sight is i = (39 \pm 1) degrees. Finally, the XMM spectrum shows evidences of other low-energy emission lines, which again appear broad and their profiles are compatible with being produced in the same region where the iron line is produced.
Burderi Luciano
D'Ai' A.
Dovciak Michael
Iaria Rosario
Karas Vladimir
No associations
LandOfFree
A relativistically smeared spectrum in the neutron star X-ray Binary 4U 1705-44: Looking at the inner accretion disc with X-ray spectroscopy does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A relativistically smeared spectrum in the neutron star X-ray Binary 4U 1705-44: Looking at the inner accretion disc with X-ray spectroscopy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A relativistically smeared spectrum in the neutron star X-ray Binary 4U 1705-44: Looking at the inner accretion disc with X-ray spectroscopy will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-372042