A Refined Harmonic Lanczos Bidiagonalization Method and an Implicitly Restarted Algorithm for Computing the Smallest Singular Triplets of Large Matrices

Mathematics – Numerical Analysis

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

31 pages, 14 figures, SIAM Journal on Scientific Computing, to appear

Scientific paper

The harmonic Lanczos bidiagonalization method can be used to compute the smallest singular triplets of a large matrix $A$. We prove that for good enough projection subspaces harmonic Ritz values converge if the columns of $A$ are strongly linearly independent. On the other hand, harmonic Ritz values may miss some desired singular values when the columns of $A$ almost linearly dependent. Furthermore, harmonic Ritz vectors may converge irregularly and even may fail to converge. Based on the refined projection principle for large matrix eigenproblems due to the first author, we propose a refined harmonic Lanczos bidiagonalization method that takes the Rayleigh quotients of the harmonic Ritz vectors as approximate singular values and extracts the best approximate singular vectors, called the refined harmonic Ritz approximations, from the given subspaces in the sense of residual minimizations. The refined approximations are shown to converge to the desired singular vectors once the subspaces are sufficiently good and the Rayleigh quotients converge. An implicitly restarted refined harmonic Lanczos bidiagonalization algorithm (IRRHLB) is developed. We study how to select the best possible shifts, and suggest refined harmonic shifts that are theoretically better than the harmonic shifts used within the implicitly restarted Lanczos bidiagonalization algorithm (IRHLB). We propose a novel procedure that can numerically compute the refined harmonic shifts efficiently and accurately. Numerical experiments are reported that compare IRRHLB with five other algorithms based on the Lanczos bidiagonalization process. It appears that IRRHLB is at least competitive with them and can be considerably more efficient when computing the smallest singular triplets.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A Refined Harmonic Lanczos Bidiagonalization Method and an Implicitly Restarted Algorithm for Computing the Smallest Singular Triplets of Large Matrices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A Refined Harmonic Lanczos Bidiagonalization Method and an Implicitly Restarted Algorithm for Computing the Smallest Singular Triplets of Large Matrices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Refined Harmonic Lanczos Bidiagonalization Method and an Implicitly Restarted Algorithm for Computing the Smallest Singular Triplets of Large Matrices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-134788

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.