A q-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra

Mathematics – Quantum Algebra

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

This is a contribution to the Vadim Kuznetsov Memorial Issue on Integrable Systems and Related Topics, published in SIGMA (Sym

Scientific paper

10.3842/SIGMA.2006.092

We prove an analogue of the Sylvester theorem for the generator matrices of the quantum affine algebra ${\rm U}_q(\hat{\mathfrak{gl}}_n)$. We then use it to give an explicit realization of the skew representations of the quantum affine algebra. This allows one to identify them in a simple way by calculating their highest weight, Drinfeld polynomials and the Gelfand-Tsetlin character (or $q$-character). We also apply the quantum Sylvester theorem to construct a $q$-analogue of the Olshanski algebra as a projective limit of certain centralizers in ${\rm U}_q(\mathfrak{gl}_n)$ and show that this limit algebra contains the $q$-Yangian as a subalgebra.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A q-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A q-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A q-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-3295

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.